

Datasheet Revision 1.1 B5



# 3GBit/s Digital Automotive Pixel Link Transmitter

The INAP560T is a high-speed digital multi-channel SerDes transmitter for infotainment applications. The highly scalable physical layer is APIX2 compatible and based on the APIX3 technology providing forward compatibility accordingly. It establishes a DC-balanced, AC coupled, low latency, point-to-point link over Star Quad (STQ) cables.

The INAP560T supports popular automotive displays with HD (High Definition) video resolutions up to 24 bit color depth. The device offers an HDMI 1.4 compliant video interface. Leveraging the HDMI 3D functionality, the device is able to receive and distinguish 2 independent video streams for transmission over the APIX2 link in point-to-point or daisy-chain applications.

The product version INAP590T supports High-bandwidth Digital Content Protection according to HDCP 1.4. It incorporates the encryption mechanisms as well as the required keys to transmit two independent streams of HDCP 1.4 encoded video and audio content over the APIX2 link.

In addition to the video transmission, the INAP560T provides independent full-duplex data communication channels. Using Inova's proprietary AShell protocol, secure data transfers are provided by error detection and automatic retransmission mechanisms. With its Media Independent Interfaces (MII/RMII), the INAP560T can directly connect to standard 100Mbit-Ethernet Media Access Controllers. Additionally, the link is optimized to carry low latency GPIO signals for reset or synchronization purposes. The built-in audio path allows synchronous TDM transmission of up to 8 audio channels, with accurate clock regeneration at the receiver for demanding infotainment applications. The high-speed serial driver can be pre-configured to adjust the characteristics of the physical layer to the transmission link and its specific PCB layout, cables and connectors.

#### **Applications:**

- Infotainment Systems
- Rear-Seat Entertainment Systems
- Cluster Applications

# INAP560T INAP590T

#### Features:

- · Flexible physical layer supporting
  - 3 Gbps downstream (APIX2)
  - 187.5 Mbps upstream
  - up to 12 Gbps downstream for physical layer testing (PRBS)
- · Supports 2 independent video streams
- HDMI 1.4a interface with 3D support
   Support for RGB and YUV color coding
- 2 HDCP encryption engines (INAP590T only)
   supports source encryption and repeater functionality
- Video resolutions up to
  - 1920x720x24Bit@60Hz
  - 1920x1080x24Bit@30Hz
- Configurable full-duplex communication channel for Data, Ethernet or GPIO
  - MII or RMII interface
  - SPI data interfaces
  - GPIOs for direct signalling
- Embedded AShell protocol
- I<sup>2</sup>S Audio interface
  - supports 16/24/32 Bit word length
  - supports 44.1 kHz / 48 / 96 kHz sampling
  - TDM support for up to 8 channels
- · Diagnostic Features:
  - Self test
  - Embedded diagnostics

#### Package:

• 151 pin aQFN

#### Temperature/Quality:

- -40°C to +95°/105°C
- AEC-Q100





# 1.0 Block Diagram



Figure 1-1: Block diagram

# 2.0 Physical Layer

The INAP560T/INAP590T physical layer is based on the third generation of APIX Technology - APIX3.

For test and qualification purposes, the physical layer of the INAP560T can be switched to APIX3 evaluation mode. In this mode, the device transmits test patterns of up to 6 Gbps at a single lane over Coax or shielded twisted pair (STP), as well as accumulated 12 Gbps (2x 6 Gbps) over STQ using the built in PRBS generator.

Even though the physical layer is based on APIX3 technology, the INAP560T/INAP590T only supports APIX2 functionality for video and data communication.



Datasheet



# **3.0 Electrical Characteristics**

# 3.1 Absolute Maximum Ratings

The absolute maximum ratings define values beyond which damage to the device may occur. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The functional operation of the device at these or any other conditions beyond the recommended operating ratings is not guaranteed.

| Parameter                             | Symbol                                                       | Min. | Max. | Units | Note               |
|---------------------------------------|--------------------------------------------------------------|------|------|-------|--------------------|
| DC Supply Voltage                     | V <sub>VDD,</sub><br>V <sub>VDDA</sub>                       | -0.5 | 1.32 | V     |                    |
| Digital IO Voltage                    | V <sub>VDDMII,</sub><br>V <sub>VDD3,</sub> V <sub>VDDH</sub> | -0.5 | 3.63 | V     |                    |
| Analog IO Voltage                     | V <sub>VDDA3,</sub><br>V <sub>VDDA_VCO,</sub>                | -0.5 | 1.32 | V     |                    |
| I/O Current (DC or transient any pin) | I <sub>D</sub>                                               | -20  | +20  | mA    |                    |
| Storage Temperature                   | T <sub>stg</sub>                                             | -55  | +150 | °C    |                    |
| Max Soldering Temperature             | $T_{SLD}$ / $T_{SLD}$                                        |      | 260  | °C    | 40 seconds maximum |

Table 3-1: Absolute maximum ratings





# **3.2 Recommended Operating Conditions**

| Parameter                  | Symbol                | Min. | Тур. | Max. | Units | Note                                  |
|----------------------------|-----------------------|------|------|------|-------|---------------------------------------|
| Digital Core supply        | V <sub>VDD</sub>      | 1.14 | 1.2  | 1.26 | V     |                                       |
| PHY Core supply            | V <sub>VDDA</sub>     | 1.14 | 1.2  | 1.26 | V     |                                       |
| Digital IO Supply MII/RMII | V <sub>VDDMII</sub>   | 1.71 |      | 3.46 | V     | Typical Operation at 1.8, 2.5 or 3.3V |
| Digital IO Supply          | V <sub>VDD3</sub>     | 1.71 |      | 3.46 | V     | Typical Operation at 1.8, 2.5 or 3.3V |
| Oscillator Supply          | V <sub>VDDA_VCO</sub> | 1.14 | 1.2  | 1.26 | V     |                                       |
| PHY IO supply              | V <sub>VDDA3</sub>    | 3.14 | 3.3  | 3.46 | V     |                                       |
| HDMI IO supply             | V <sub>VDDH</sub>     | 3.14 | 3.3  | 3.46 | V     |                                       |
| Ambient Temperature        | T <sub>a</sub>        | -40  | -    | +105 | °C    |                                       |

Table 3-2: Recommended operating conditions

# 3.3 Supply currents

| Parameter                      | Symbol                                     | Min. | Typ. <sup>a</sup> | Max. | Units | Note |
|--------------------------------|--------------------------------------------|------|-------------------|------|-------|------|
| Digital Core supply            | I <sub>VDD</sub>                           |      | 83                | 115  | mA    |      |
| PHY Core supply                | I <sub>VDDA</sub>                          |      | 80                | 100  | mA    |      |
| Digital IO Supply <sup>b</sup> | I <sub>VDD3</sub> +<br>I <sub>VDDMII</sub> |      | 8                 | 50   | mA    |      |
| Digital IO Supply HDMI         | I <sub>VDDH</sub>                          |      | 105               | 130  | mA    |      |
| Oscillator Supply              | I <sub>VDDA_VCO</sub>                      |      | 5                 | 7    | mA    |      |
| PHY IO supply (Single PHY)     | V <sub>VDDA3</sub>                         |      | 27                | 105  | mA    |      |

 
 Table 3-3: Supply currents

 a. Typical values for APIX2 mode at 3GBit/s, MII at 25Mhz and a Pixel clock of 95MHz, HDCP disabled, 5m cable

 b. IO Currents configured to minimum drive current. Maximum for MII interface and SPI slave interface active si multaneously





# 3.3.1 Supply current vs cable length

The following values reflect the typical power consumption values based on a Leoni Dacar 636 cable and the INAP560T evaluation board. Values in the final application may be different depending on the hardware layout and the selected cable.

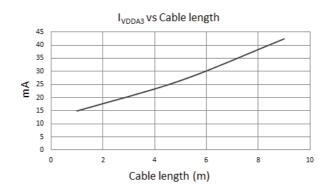



Figure 3-1: Supply current vs cable length

# 3.3.2 Supply current vs pixel clock frequency

The following values reflect the typical power consumption values for video transmission at 24-bit color depth.

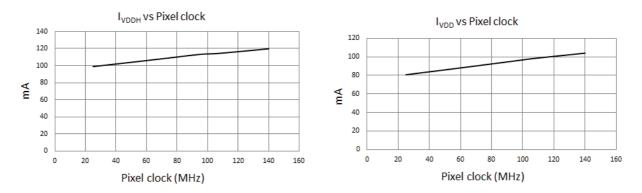



Figure 3-2: Supply current vs pixel clock frequency



Datasheet



# **3.4 Interface Characteristics**

# 3.4.1 Serial Interface

The INAP560T downstream serial interface offers a flexible serial interface, with configurable pre-emphasis and digital filter structure. Data dependent deterministic jitter components, mainly introduced by ISI due to cable attenuation, can be compensated by pre-emphasis and equalization. Therefore only periodic and random jitter components are considered. The following values are determined for 3 Gbps mode.

| Parameter       | Symbol            | Min. | Тур. | Max. | Units | Note                                                                                                              |
|-----------------|-------------------|------|------|------|-------|-------------------------------------------------------------------------------------------------------------------|
| Periodic Jitter | JΡ <sub>δ-δ</sub> | -    | 30   | -    | mUI   | using 0101 pattern;<br>parameter depends<br>on application board,<br>measured on charac-<br>terization test board |
| Random Jitter   | JR <sub>rms</sub> | -    | 2.3  | -    | ps    | using PRBS12 signal                                                                                               |

Table 3-4: Downstream interface characteristics (TXDN0\_P, TXDN0\_N)

| Parameter                        | Symbol                | Min.                                     | Max.                                                   | Units | Note |
|----------------------------------|-----------------------|------------------------------------------|--------------------------------------------------------|-------|------|
| Differential input voltage range | V <sub>diff_in</sub>  | ± 60                                     | ± 500                                                  | mV    |      |
| Serial input common mode range   | V <sub>cmm_SDIN</sub> | GND +0.7V +<br>(V <sub>diff_in</sub> /2) | V <sub>AVDD</sub> +0.5V -<br>(V <sub>diff_in</sub> /2) | V     |      |

Table 3-5: Upstream interface characteristics (TXDN1\_P, TXDN1\_N)





# 3.4.2 HDMI Interface

| Parameter          | Description                                                  | Min.                    | Тур. | Мах               | Units |
|--------------------|--------------------------------------------------------------|-------------------------|------|-------------------|-------|
| BR                 | Serial Bit Rate                                              | 250                     |      | 2250              | Mbps  |
| DREXT              | REXT Resistance Error (470 ohms)                             | -1                      | 0    | 1                 | %     |
| T <sub>SKEW</sub>  | D2-0 [19:1] Skew                                             | 0                       |      | 1100              | ps    |
| I <sub>DDL</sub>   | Supply Current 1.2V                                          |                         | 110  | 160               | mA    |
| V <sub>IDIFF</sub> | Input Differential Voltage                                   | 150                     |      | 1200              | mV    |
| V <sub>ICM</sub>   | Input Common Mode Voltage<br>(V <sub>VDDH</sub> =3.3V +/-5%) | V <sub>VDDH</sub> - 0.4 |      | V <sub>VDDH</sub> | V     |
| RT                 | Input Termination Resistance                                 | 45                      | 50   | 55                | Ohm   |

Table 3-6: HDMI Interface electrical characteristics

# 3.4.3 Digital IOs

### 3.4.3.1 General Characteristics

The following characteristics are valid for MII/RMII, SPI\_M, SPI\_S, STATUS and GPIO functionality. All values specified for  $T_A=25^{\circ}$ C. Load capacitance of 5pF. Drive strength configured to 4mA.  $V_{DVDD}$  refers to  $V_{VDD3}$  or  $V_{VDDMII}$  respectively.

| Parameter       | Description                                                                               | Min.                    | Тур.       | Мах                     | Units |
|-----------------|-------------------------------------------------------------------------------------------|-------------------------|------------|-------------------------|-------|
| V <sub>IL</sub> | Input Low Voltage                                                                         | V <sub>VSS</sub> - 0.3  |            | 0.3 * V <sub>DVDD</sub> | V     |
| V <sub>IH</sub> | Input High Voltage                                                                        | 0.7 * V <sub>DVDD</sub> |            | V <sub>DVDD</sub> + 0.3 | V     |
| V <sub>OL</sub> | Output Low Voltage                                                                        |                         |            | 0.4                     | V     |
| V <sub>OH</sub> | Output High Voltage                                                                       | V <sub>DVDD</sub> - 0.4 |            |                         | V     |
| I <sub>OH</sub> | Output Drive Current High, V <sub>OH</sub> =2.9V                                          | 7.4                     | 10.4       | 14.3                    | mA    |
| I <sub>OL</sub> | Output Drive Current Low, V <sub>OL</sub> =0.4V                                           | 8.3                     | 11.0       | 16.1                    | mA    |
| ۱ <sub>L</sub>  | Input Leakage Current, Receive Mode                                                       |                         |            | <1                      | μA    |
| t <sub>RO</sub> | Output Rise Time (Slew Rate Fast)<br>V <sub>DVDD</sub> = 1.8V<br>V <sub>DVDD</sub> = 3.3V | 0.6<br>0.4              | 1.0<br>0.8 | 1.7<br>1.2              | ns    |
| t <sub>FO</sub> | Output Fall Time (Slew Rate Fast)<br>V <sub>DVDD</sub> = 1.8V<br>V <sub>DVDD</sub> = 3.3V | 0.6<br>0.6              | 1<br>0.8   | 1.6<br>1.2              | ns    |

Table 3-7: General IO Characteristics





# 3.4.3.2 SPI Slave Interface timing

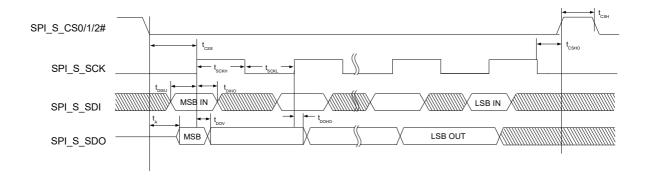



Figure 3-3: SPI Slave Timing Diagram

| Parameter         | Description           | Min | Max | Units |
|-------------------|-----------------------|-----|-----|-------|
| f <sub>SCK</sub>  | SCK Clock Frequency   | -   | 30  | MHz   |
| t <sub>scкн</sub> | SCK High Time         | 6   | -   | ns    |
| t <sub>SCKL</sub> | SCK Low Time          | 6   | -   | ns    |
| t <sub>CSH</sub>  | CS# High Time         | 22  | -   | ns    |
| t <sub>CSS</sub>  | CS# Setup Time        | 64  | -   | ns    |
| t <sub>CSHO</sub> | CS# Hold Time         | 22  | -   | ns    |
| t <sub>DISU</sub> | Data In Setup Time    | 6   | -   | ns    |
| t <sub>DIHO</sub> | Data in Hold Time     | 6   | -   | ns    |
| t <sub>DOV</sub>  | Data Output Valid     | -   | 21  | ns    |
| t <sub>DOHO</sub> | Data Output Hold Time | 21  | -   | ns    |
| t <sub>A</sub>    | Data Access Time      | 58  | -   | ns    |

All values specified for T<sub>A</sub>=25°C. t<sub>SCK</sub> =  $1/f_{SCK}$ .

Table 3-8: SPI Slave Interface characteristics





#### 3.4.3.3 SPI Master Interface timing

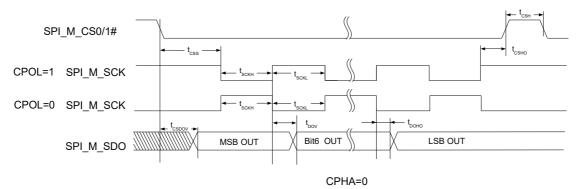
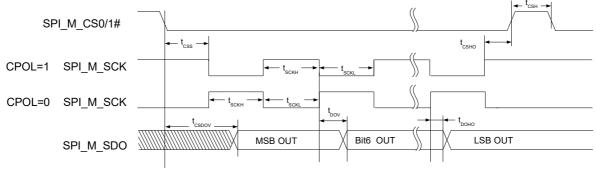




Figure 3-4: SPI Master Timing Diagram (CPHA=0)



CPHA=1

Figure 3-5: SPI Master Timing Diagram (CPHA=1)

| Parameter                     | Description                   | Min.                  | Max.                  | Units |
|-------------------------------|-------------------------------|-----------------------|-----------------------|-------|
| f <sub>SCK</sub> a            | SCK Clock Frequency           | 0.114                 | 46.8                  | MHz   |
| t <sub>scкн</sub>             | SCK High Time                 | 1/2 t <sub>fsck</sub> | -                     | ns    |
| t <sub>SCKL</sub>             | SCK Low Time                  | 1/2 t <sub>fsck</sub> | -                     | ns    |
| t <sub>CSH</sub>              | CS# High Time                 | 6                     | -                     | ns    |
| t <sub>CSS</sub> <sup>b</sup> | CS# Setup Time (configurable) | 22                    | -                     | ns    |
| t <sub>CSHO</sub> c           | CS# Hold Time                 | 0                     | 128                   | ns    |
| t <sub>DOV</sub>              | Data Output Valid Time        | -                     | 1/2 t <sub>fsck</sub> | ns    |
| t <sub>DOHO</sub>             | Data Output Hold Time         | 1/2 t <sub>fsck</sub> | -                     | ns    |
| t <sub>CSDOV</sub>            | CS To Data Valid Time         | -                     | 1                     | ns    |

# Table 3-9: SPI Master Interface characteristics

a. can be configured from core clock/16384 to core clock/8 by cfg\_spi\_m\_clock\_div

b. can be configured from 16 to 48 core clock cycles or multiples of t<sub>fsck</sub> by cfg\_spi\_m\_cs\_delay

c. can be configured to no hold time or 24 core clock cycles





# 3.4.3.4 MII Interface Timings

 $f_{MII CLK} = 1 / t_{PERIOD}$ .

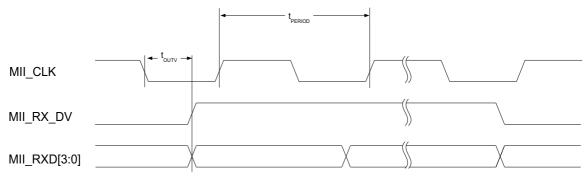
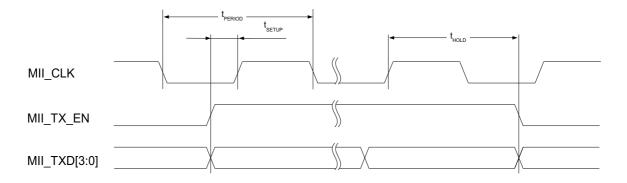




Figure 3-6: MII Interface Timing Diagram Transmit



# Figure 3-7: MII Interface Timing Diagram Receive

| Parameter            | Description Min Typ Max |     | Units |    |     |
|----------------------|-------------------------|-----|-------|----|-----|
| f <sub>MII_CLK</sub> | Clock Frequency         | 2.5 | -     | 50 | MHz |
| t <sub>SETUP</sub>   | Setup Time              | 9   | -     | -  | ns  |
| t <sub>HOLD</sub>    | Hold Time               | 0   | -     | -  | ns  |
| toutv                | Output Valid            | 1   | -     | 7  | ns  |

| Table | 3-10:   | MII | Interface | Timinas |
|-------|---------|-----|-----------|---------|
|       | • • • • |     |           |         |





### 3.4.3.5 APFlag Interface

#### 3.4.3.5.1 APFlag Interface Downstream

If configured as inputs, pins AP00\_Flag and AP10\_flag are sampled asynchronously and transmitted to configurable GPIO output ports at receiver side. The sampling frequency can be configured using parameters GPIO Bandwidth (gpio\_bw\_dwn) and GPIO halved (gpio\_bw\_div). For further information please refer to the INAP560T/INAP590T user manual. All values specified for  $T_A=25^{\circ}C$ .

| Downstream<br>Bandwidth | GPIO<br>ports | GPIO<br>Bandwidth | GPIO<br>halved | Sampling Frequency. | Unit |
|-------------------------|---------------|-------------------|----------------|---------------------|------|
| 3 GBit/s                | 1             | high              | off            | 26.768              | MHz  |
| 3 GBit/s                | 1             | low               | off            | 6.696               | MHz  |
| 3 GBit/s                | 1             | high              | on             | 13.393              | MHz  |
| 3 GBit/s                | 1             | low               | on             | 3.348               | MHz  |
| 3 GBit/s                | 2             | high              | off            | 13.393              | MHz  |
| 3 GBit/s                | 2             | low               | off            | 3.348               | MHz  |
| 3 GBit/s                | 2             | high              | on             | 6.696               | MHz  |
| 3 GBit/s                | 2             | low               | on             | unsupported         | MHz  |

#### Table 3-11: GPIO Interface Downstream

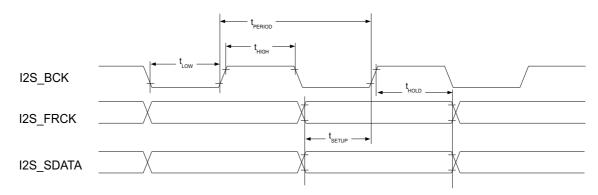
#### 3.4.3.5.2 APFlag interface upstream

Each of the pins AP00\_FLAG, AP01\_FLAG, AP10\_FLAG and AP11\_FLAG can be configured as APIX2 GPIO outputs, for which the data are coming from either one or two APIX2 receiver devices. The output frequency can be configured using parameter GPIO Bandwidth (gpio\_bw\_up). For further informations please refer to the INAP375T user manual. All values specified for  $T_A=25^{\circ}C$ .

| Number of<br>Rx | Upstream<br>Bandwidth | GPIO ports | GPIO<br>Bandwidth | Maximum Output frequency | Unit |
|-----------------|-----------------------|------------|-------------------|--------------------------|------|
| 1               | 187.5 MBit/s          | 1          | high              | 13.39                    | MHz  |
| 1               | 187.5 MBit/s          | 1          | low               | 3.35                     | MHz  |
| 1               | 187.5 MBit/s          | 2          | high              | 13.39                    | MHz  |
| 1               | 187.5 MBit/s          | 2          | low               | 3.35                     | MHz  |
| 1               | 62.5 MBit/s           | 1          | high              | 4.46                     | MHz  |
| 1               | 62.5 MBit/s           | 1          | low               | 1.12                     | MHz  |
| 1               | 62.5 MBit/s           | 2          | high              | 4.46                     | MHz  |
| 1               | 62.5 MBit/s           | 2          | low               | 1.12                     | MHz  |
| 2               | 187.5 MBit/s          | 1          | high              | 6.69                     | MHz  |

#### Table 3-12: GPIO Interface Upstream






| Number of<br>Rx | Upstream<br>Bandwidth | GPIO ports | GPIO<br>Bandwidth | Maximum Output frequency | Unit |
|-----------------|-----------------------|------------|-------------------|--------------------------|------|
| 2               | 187.5 MBit/s          | 1          | low               | 3.35                     | MHz  |
| 2               | 187.5 MBit/s          | 2          | high              | 6.96                     | MHz  |
| 2               | 187.5 MBit/s          | 2          | low               | 3.35                     | MHz  |
| 2               | 62.5 MBit/s           | 1          | high              | 2.23                     | MHz  |
| 2               | 62.5 MBit/s           | 1          | low               | 1.12                     | MHz  |
| 2               | 62.5 MBit/s           | 2          | high              | 2.23                     | MHz  |
| 2               | 62.5 MBit/s           | 2          | low               | 1.12                     | MHz  |

Table 3-12: GPIO Interface Upstream

# 3.4.3.6 I<sup>2</sup>S Audio Interface

 $f_{BCK} = 1 / t_{PERIOD}$ .



### Figure 3-8: I2S Audio Interface Timing Diagram

| Parameter          | Description       | Min  | Мах   | Units |
|--------------------|-------------------|------|-------|-------|
| f <sub>вск</sub>   | I2S_BCK frequency | 0.75 | 26.78 | MHz   |
| t <sub>ніGн</sub>  | I2S_BCK high time | 7    | -     | ns    |
| t <sub>LOW</sub>   | I2S_BCK low time  | 7    | -     | ns    |
| t <sub>SETUP</sub> | Setup time        | 2    | -     | ns    |
| t <sub>HOLD</sub>  | Hold time         | 7    | -     | ns    |

Table 3-13: I2S Audio Interface Timing





# 3.4.4 Reference Clock

The INAP560T requires an external clock source like a crystal or oscillator, acting as reference for the internal PLL.

| Parameter                        | Symbol               | min. | typ. | max.             | Unit |
|----------------------------------|----------------------|------|------|------------------|------|
| Input voltage at XI <sup>a</sup> | V <sub>XI</sub>      | 0    |      | V <sub>VDD</sub> | V    |
| Nominal Frequency                | f <sub>ref_osc</sub> |      | 30   |                  | MHZ  |
| Frequency Tolerance              | F <sub>TOL</sub>     | -100 |      | +100             | ppm  |

#### Table 3-14: Reference clock requirements

a. XI can be driven by an external clock for bypass operation. XO should never be driven or loaded by anything other than the oscillator crystal.

The internal oscillator has a fixed drive strength. In order to guarantee stable oscillation, the external crystal ESR and the capacitive loading on XI and XO should be selected to meet the conditions similar to the following table. The lower the ESR the higher the possible external load.

| Equivalent Series Resistance (Ohm, ESR) | Capacitive Loading (pf, C) |
|-----------------------------------------|----------------------------|
| 20                                      | <16                        |
| 30                                      | <12                        |
| 40                                      | <10                        |
| 50                                      | <8                         |

Table 3-15: Typical ESR / Capacitive Load combinations





# 3.4.5 RESET and Boot strap timing

The INAP560T/INAP590T offers several boot strap pins to define, how the device will come up and check for a configuration after boot up or hardware reset. The correct boot strap selection is necessary for proper operation of the INAP560T/INAP590T device. See Section 4.1.1 for available boot strap options and pins.

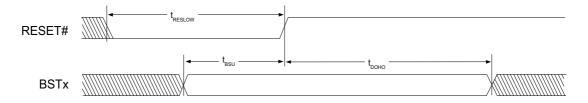



Figure 3-9: Reset and Boot Strap Timing Diagram

For a valid Reset Low Time ( $t_{RESLOW}$ ) all supply voltages needs to be stable in the operating condition. At reset release (rising edge of RESET#) a stable reference clock is required. All values specified for  $T_A=25^{\circ}$ C.

| Parameter           | Description              | Min. | Тур. | Max. | Units |
|---------------------|--------------------------|------|------|------|-------|
| t <sub>RESLOW</sub> | Reset Low Time           | 1    | -    | -    | ms    |
| t <sub>BSU</sub>    | Boot Strap In Setup Time | 0    | -    | -    | ns    |
| t <sub>BHO</sub>    | Boot Strap in Hold Time  | 200  | -    | -    | ns    |

Table 3-16: Boot Strap Reset Timing





# 4.0 Package Information

# 4.1 Pin description

# 4.1.1 Bootstrap options

The INAP560T offers several bootstrap options, which define the functionality of certain digital signal pins after hardware reset. The pin status is sampled after reset release.

| Option    |           |           |     | Description |         |                   |
|-----------|-----------|-----------|-----|-------------|---------|-------------------|
|           | AP01_FLAG | AP11_FLAG | MB0 | MB1         | STATUS1 |                   |
| BST_SPI_0 |           |           |     |             | 0       | Dual SPI          |
| BST_SPI_1 |           |           |     |             | 1       | Single SPI        |
| BST_MII_0 | 0         |           |     | 0           |         | (reserved)        |
| BST_MII_1 | 1         |           |     | 0           |         | (reserved)        |
| BST_MII_2 | 0         |           |     | 1           |         | MII/RMII0 and IOs |
| BST_MII_3 | 1         |           |     | 1           |         | (reserved)        |
| BST_PHY_0 |           |           | 0   |             |         | APIX3 Mode        |
| BST_PHY_1 |           |           | 1   |             |         | APIX2 Mode        |
| BST_VDD_0 |           | 0         |     |             |         | VDD3 = 1.8V       |
| BST_VDD_1 |           | 1         |     |             |         | VDD3 = 3.3V       |

Table 4-1: Boot-strap options

# 4.1.2 Pin list

The functionality of each pin is available in all BST\_SPI and BST\_MII bootstrap modes unless otherwise noted.

| Pin Name | Pin                                                                                          | Туре | Description                                 |
|----------|----------------------------------------------------------------------------------------------|------|---------------------------------------------|
| VDD      | C2, F2, J3, M4,<br>R4, R12, M12,<br>M15, K12, J12,<br>H12, G12, E13,<br>E12, C13, B10,<br>C5 |      | Digital Core Power Supply 1.2 V             |
| VDDMII   | D2, G3, H1, L2                                                                               |      | MII/RMII IO Power Supply (1.8V, 2.5V, 3.3V) |
| VDD3     | N2, P3, R14,<br>M14, B14, C11,<br>D4                                                         |      | General IO Power Supply (1.8V, 2.5V, 3.3V)  |
| VDDA     | P5, P11, P8                                                                                  |      | PHY Core Power Supply 1.2V                  |
| VDDA_VCO | M8                                                                                           |      | Oscillator Power Supply 1.2V                |





| Pin Name    | Pin                        | Туре | Description                                                                                                        |
|-------------|----------------------------|------|--------------------------------------------------------------------------------------------------------------------|
| VDDA3       | R5, N7, N9, R11            |      | PHY IO Power Supply 3.3V                                                                                           |
| VDDH        | A10, D8, C6, D6,<br>N5, P4 |      | HDMI Power Supply 3.3V                                                                                             |
| VSS         | R13,<br>(exposed pad)      |      | Ground                                                                                                             |
| VSSH        | D9, D7, A5                 |      | HDMI Ground                                                                                                        |
| MII0_TXC    | D3                         | I/O  | BST_MII_2, BST_MII_3:<br>MPIO_M13: Multipurpose IO (unused)                                                        |
| MII0_TX_CTL | E4                         | I/O  | BST_MII_2, BST_MII_3:<br>MII0_TX_EN: MII/RMII Interface 0 Transmit Enable Input                                    |
| MII0_TXD0   | C1                         | I/O  | BST_MII_2, BST_MII_3:<br>MII0_TXD0: MII/RMII Interface 0 Transmit Data Input 0                                     |
| MII0_TXD1   | E3                         | I/O  | BST_MII_2, BST_MII_3:<br>MII0_TXD1: MII/RMII Interface 0 Transmit Data Input 1                                     |
| MII0_TXD2   | F4                         | I/O  | BST_MII_2, BST_MII_3:<br>MII0_TXD2: MII Interface 0 Transmit Data Input 2                                          |
| MII0_TXD3   | D1                         | I/O  | BST_MII_2, BST_MII_3:<br>MII0_TXD3: MII Interface 0 Transmit Data Input 3                                          |
| MII0_RXC    | F3                         | I/O  | BST_MII_2, BST_MII_3:<br>MII0_CLK: MII/RMII Interface 0 Reference Clock Output                                     |
| MII0_RX_CTL | E1                         | I/O  | BST_MII_2, BST_MII_3:<br>MII0_RX_DV: MII/RMII Interface 0 RX Data Valid Output                                     |
| MII0_RXD0   | G4                         | I/O  | BST_MII_2, BST_MII_3:<br>MII0_RXD0: MII/RMII Interface 0 Receive Data Output 0                                     |
| MII0_RXD1   | F1                         | I/O  | BST_MII_2, BST_MII_3:<br>MII0_RXD1: MII/RMII Interface 0 Receive Data Output 1                                     |
| MII0_RXD2   | G2                         | I/O  | BST_MII_2, BST_MII_3:<br>MII0_RXD2: MII Interface 0 Receive Data Output 2                                          |
| MII0_RXD3   | G1                         | I/O  | BST_MII_2, BST_MII_3:<br>MII0_RXD3: MII Interface 0 Receive Data Output 3                                          |
| MII1_RXD3   | H3                         | I/O  | BST_MII_2:<br>MPIO_M01: Multipurpose IO (unused)<br>BST_MII_3:<br>MII1_RXD3: MII Interface 1 Receive Data Output 3 |
| MII1_RXD2   | H2                         | I/O  | BST_MII_2:<br>MPIO_M02: Multipurpose IO (unused)<br>BST_MII_3:<br>MII1_RXD2: MII Interface 1 Receive Data Output 2 |





| Pin Name    | Pin | Туре | Description                                                                                                                     |
|-------------|-----|------|---------------------------------------------------------------------------------------------------------------------------------|
| MII1_RXD1   | J1  | I/O  | BST_MII_2:<br>MPIO_M03: Multipurpose IO (unused)<br>BST_MII_3:<br>MII1_RXD1: MII/RMII Interface 1 Receive Data Output 1         |
| MII1_RXD0   | J2  | I/O  | BST_MII_2:<br>MPIO_M04: Multipurpose IO (unused)<br>BST_MII_3:<br>MII1_RXD0: MII/RMII Interface 1 Receive Data Output 0         |
| MII1_RX_CTL | J4  | I/O  | BST_MII_2:<br>MPIO_M05: Multipurpose IO (unused)<br>BST_MII_3:<br>MII1_RX_DV: MII/RMII Interface 1 RX Data Valid output         |
| MII1_RXC    | К1  | I/O  | BST_MIL_2:<br>MPIO_M06: Multipurpose IO (unused)<br>BST_MIL_3:<br>MII1_CLK: MII/RMII Interface 1 RX Reference Clock Out-<br>put |
| MII1_TXD3   | K3  | I/O  | BST_MII_2:<br>MPIO_M07: Multipurpose IO (unused)<br>BST_MII_3:<br>MII1_TXD3: MII Interface 1 Transmit Data Input 3              |
| MII1_TXD2   | L1  | I/O  | BST_MII_2:<br>MPIO_M08: Multipurpose IO (unused)<br>BST_MII_3:<br>MII1_TXD2: MII Interface 1 Transmit Data Input 2              |
| MII1_TXD1   | K4  | I/O  | BST_MII_2:<br>MPIO_M09: Multipurpose IO (unused)<br>BST_MII_3:<br>MII1_TXD1: MII/RMII Interface 1 Transmit Data Input 1         |
| MII1_TXD0   | M1  | I/O  | BST_MII_2:<br>MPIO_M10: Multipurpose IO (unused)<br>BST_MII_3:<br>MII1_TXD0: MII/RMII Interface 1 Transmit Data Input 0         |
| MII1_TX_CTL | L3  | I/O  | BST_MII_2:<br>MPIO_M11: Multipurpose IO (unused)<br>BST_MII_3:<br>MII1_TX_EN: MII/RMII Interface 1 Transmit Enable<br>(TX_EN)   |
| MII1_TXC    | M2  | I/O  | BST_MII_2, BST_MII_3:<br>MPIO_M12: Multipurpose IO (unused)                                                                     |
| RESET_N     | N1  | I    | Reset (Low Active)                                                                                                              |
| TEST        | L4  | I    | Test Mode Enable, pull down to GND (0 Ohm)                                                                                      |





| Pin Name                 | Pin | Туре | Description                                                                                                              |
|--------------------------|-----|------|--------------------------------------------------------------------------------------------------------------------------|
| STATUS0                  | M3  | 0    | Status Output 0                                                                                                          |
| SPI_M_CS1_N              | N3  | I/O  | BST_SPI_0:<br>SPI Master Chip Select 1 Output (Low Active)<br>BST_SPI_1:<br>MPIO_10: Multipurpose IO (unused)            |
| SPI_M_SCK                | P2  | I/O  | <u>BST_SPI_0:</u><br>SPI Master Clock Output<br><u>BST_SPI_1:</u><br>MPIO_11: Multipurpose IO (unused)                   |
| SPI_M_SDO                | M5  | I/O  | <u>BST_SPI_0:</u><br>SPI Master Data Output<br><u>BST_SPI_1:</u><br>MPIO_12: Multipurpose IO (unused)                    |
| SPI_M_CS0_N              | N4  | I/O  | BST_SPI_0:<br>SPI Master Chip Select 0 Output (Low Active)<br>BST_SPI_1:<br>SPI_S_RW: SPI Slave Read/Write request input |
| SPI_M_STALL <sup>b</sup> | P1  | I    | SPI Master Flow control pin                                                                                              |
| AP00_FLAG                | R2  | I/O  | Application Flag 00                                                                                                      |
| AP01_FLAG                | R3  | I/O  | Application Flag 01 / Boot strap pin                                                                                     |
| TXDN1_P                  | M6  | I/O  | APIX Downstream Serial Output Channel 1                                                                                  |
| TXDN1_N                  | M7  | I/O  | APIX Downstream Serial Output Channel 1                                                                                  |
| ATST                     | N8  | I/O  | APIX Analog Test Port (leave open)                                                                                       |
| TXDN0_N                  | M9  | I/O  | APIX Downstream Serial Output Channel 0                                                                                  |
| TXDN0_P                  | M10 | I/O  | APIX Downstream Serial Output Channel 0                                                                                  |
| XI                       | N11 | I    | Oscillator Input (30MHz)                                                                                                 |
| ХО                       | P12 | 0    | Oscillator Output (30MHz)                                                                                                |
| SPI_S_CS0_N <sup>a</sup> | P13 | I    | SPI Slave Chip Select 0 Input (Low Active)                                                                               |
| SPI_S_CS1_N <sup>a</sup> | P14 | I    | SPI Slave Chip Select 1 Input (Low Active)                                                                               |
| SPI_S_CS2_N <sup>a</sup> | N13 | I    | SPI Slave Chip Select 2 Input (Low Active)                                                                               |
| AP11_FLAG                | P15 | I/O  | Application Flag 11 / Boot strap pin                                                                                     |
| SPI_S_SCK                | N14 | I    | SPI Slave Clock                                                                                                          |
| SPI_S_SDI                | M13 | I    | SPI Slave Data Input                                                                                                     |
| SPI_S_SDO                | N15 | 0    | SPI Slave Data Output                                                                                                    |





| Pin Name               | Pin | Туре | Description                                              |
|------------------------|-----|------|----------------------------------------------------------|
| SPI_S_STALL            | L12 | I    | SPI Slave Flow Control                                   |
| STATUS2                | D12 | 0    | Status Output 2                                          |
| AP10_FLAG              | B13 | I/O  | Application Flag 10                                      |
| I2S_FRCK <sup>b</sup>  | C12 | I    | I2S Frame clock Input                                    |
| I2S_BCK <sup>b</sup>   | D11 | I    | I2S Bit Clock Input                                      |
| I2S_SDATA <sup>b</sup> | B12 | I    | I2S Data Input                                           |
| I2S_MCLK               | A12 | I/O  | I2S Master Clock In/Output                               |
| STATUS1                | D10 | I/O  | Status Output 1 / Boot strap pin                         |
| DDC_SDA                | A11 | I/O  | HDMI – I2C Data Line, Open-drain                         |
| DDC_SCL                | C10 | I/O  | HDMI – I2C Clock Line, Open-drain                        |
| TMDSD2_P               | В9  | I    | HDMI – TMDS Data line 2 P                                |
| TMDSD2_N               | A9  | I    | HDMI – TMDS Data line 2 N                                |
| TMDSD1_P               | B8  | I    | HDMI – TMDS Data line 1 P                                |
| TMDSD1_N               | A8  | I    | HDMI – TMDS Data line 1 N                                |
| TMDSD0_P               | A7  | I    | HDMI – TMDS Data line 0 P                                |
| TMDSD0_N               | В7  | I    | HDMI – TMDS Data line 0 N                                |
| TMDSCK_P               | A6  | I    | HDMI – TMDS Clock line P                                 |
| TMDSCK_N               | B6  | I    | HDMI – TMDS Clock line N                                 |
| REXT                   | B5  | 0    | HDMI – BIAS Resistor Output, connect with 4.7kOhm to GND |
| HDMI_MON               | A4  | 0    | HDMI – Monitor Output - leave open                       |
| MB0                    | В3  | I/O  | Mailbox 0 Output / Bootstrap pin                         |





| Pin Name | Pin                                                                                                                                                                                          | Туре     | Description                                        |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------|
| MB1      | B2                                                                                                                                                                                           | I/O      | Mailbox 1 Output / Bootstrap pin                   |
| ALIVE    | C3                                                                                                                                                                                           | I/O      | reserved                                           |
| NC       | A1,B1,A2, A3,<br>A13, A14, A15,<br>B15, B11, B4, D5,<br>C4, L13, L14,<br>L15, K13, K14,<br>K15, J13, J14,<br>H14, H13, G15,<br>G14, G13, F15,<br>F14, F13, E14,<br>D15, C15, C14,<br>R1, R15 |          | do not connect, place pad for mechanical stability |
|          |                                                                                                                                                                                              | Table 4- | -2: Pin list aQFN 151                              |

a. Internal weak pull-up after reset

b. Internal weak pull-down after reset





# 4.2 Pin reset states

| Pin Name    | Pin | Туре | Reset state |
|-------------|-----|------|-------------|
| MII0_TXC    | D3  | I/O  | Tri-State   |
| MII0_TX_CTL | E4  | I/O  | Tri-State   |
| MII0_TXD0   | C1  | I/O  | Tri-State   |
| MII0_TXD1   | E3  | I/O  | Tri-State   |
| MII0_TXD2   | F4  | I/O  | Tri-State   |
| MII0_TXD3   | D1  | I/O  | Tri-State   |
| MII0_RXC    | F3  | I/O  | Tri-State   |
| MII0_RX_CTL | E1  | I/O  | Tri-State   |
| MII0_RXD0   | G4  | I/O  | Tri-State   |
| MII0_RXD1   | F1  | I/O  | Tri-State   |
| MII0_RXD2   | G2  | I/O  | Tri-State   |
| MII0_RXD3   | G1  | I/O  | Tri-State   |
| MII1_RXD3   | H3  | I/O  | Tri-State   |
| MII1_RXD2   | H2  | I/O  | Tri-State   |
| MII1_RXD1   | J1  | I/O  | Tri-State   |
| MII1_RXD0   | J2  | I/O  | Tri-State   |
| MII1_RX_CTL | J4  | I/O  | Tri-State   |
| MII1_RXC    | K1  | I/O  | Tri-State   |
| MII1_TXD3   | К3  | I/O  | Tri-State   |
| MII1_TXD2   | L1  | I/O  | Tri-State   |
| MII1_TXD1   | K4  | I/O  | Tri-State   |
| MII1_TXD0   | M1  | I/O  | Tri-State   |
| MII1_TX_CTL | L3  | I/O  | Tri-State   |
| MII1_TXC    | M2  | I/O  | Tri-State   |
| TEST        | L4  | I    | Input       |
| STATUS0     | M3  | I/O  | Tri-State   |
| SPI_M_CS1_N | N3  | I/O  | Tri-State   |
| SPI_M_SCK   | P2  | I/O  | Tri-State   |

Table 4-3: Reset state of all digital IO pins





| Pin Name    | Pin | Туре | Reset state               |  |
|-------------|-----|------|---------------------------|--|
| SPI_M_SDO   | M5  | I/O  | Tri-State                 |  |
| SPI_M_CS0_N | N4  | I/O  | Tri-State                 |  |
| SPI_M_STALL | P1  | I/O  | Tri-State                 |  |
| AP00_FLAG   | R2  | I/O  | Tri-State                 |  |
| AP01_FLAG   | R3  | I/O  | Tri-State                 |  |
| SPI_S_CS0_N | P13 | I    | Input, internal pull-up   |  |
| SPI_S_CS1_N | P14 | I    | Input, internal pull-up   |  |
| SPI_S_CS2_N | N13 | I    | Input, internal pull-up   |  |
| AP11_FLAG   | P15 | I/O  | Tri-State                 |  |
| SPI_S_SCK   | N14 | I    | Input                     |  |
| SPI_S_SDI   | M13 | I    | Input                     |  |
| SPI_S_SDO   | N15 | I    | Input                     |  |
| SPI_S_STALL | L12 | I    | Input                     |  |
| STATUS2     | D12 | 0    | Tri-State                 |  |
| AP10_FLAG   | B13 | I/O  | Tri-State                 |  |
| I2S_FRCK    | C12 | I    | Input, internal pull-down |  |
| I2S_BCK     | D11 | I    | Input, internal pull-down |  |
| I2S_SDATA   | B12 | I    | Input, internal pull-down |  |
| I2S_MCLK    | A12 | I/O  | Tri-State                 |  |
| STATUS1     | D10 | I/O  | Tri-State                 |  |
| DDC_SDA     | A11 | I/O  | Tri-State                 |  |
| DDC_SCL     | C10 | I/O  | Tri-State                 |  |
| HDMI_MON    | A4  | 0    | Output                    |  |
| MB0         | B3  | I/O  | Tri-State                 |  |

Table 4-3: Reset state of all digital IO pins





| Pin Name | Pin                                                                                                                                                                                            | Туре | Reset state |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|
| MB1      | B2                                                                                                                                                                                             | I/O  | Tri-State   |
| ALIVE    | C3                                                                                                                                                                                             | I/O  | Tri-State   |
| NC       | A1, A2, A3, A13,<br>A15, A15, B1,<br>B15, B11, B4,<br>D5, C4, L13,<br>L14, L15, K13,<br>K14, K15, J13,<br>J14, H14, H13,<br>G15, G14, G13,<br>F15, F14, F13,<br>E14, D15, C15,<br>C14, R1, R15 |      | Tri-State   |

Table 4-3: Reset state of all digital IO pins

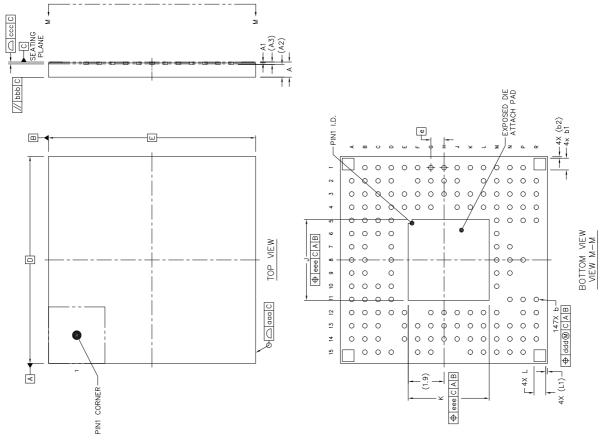




# 4.3 Pinout Diagram

|   | 1               | 2         | 3               | 4               | 5         | 6        | 7        | 8        | 9        | 10      | 11      | 12              | 13              | 14              | 15        | _ |
|---|-----------------|-----------|-----------------|-----------------|-----------|----------|----------|----------|----------|---------|---------|-----------------|-----------------|-----------------|-----------|---|
| A | NC              | NC        | NC              | HDMI_MON        | VSSH      | TMDSCK_P | TMDSD0_P | TMDSD1_N | TMDSD2_N | VDDH    | DDC_SDA | I2S_MCLK        | NC              | NC              | NC        | A |
| в | NC              | MB1       | MB0             | NC              | REXT      | TMDSCK_N | TMDSD0_N | TMDSD1_P | TMDSD2_P | VDD     | NC      | 12S_SDATA       | AP10_FLAG       | VDD3            | NC        | в |
| с | MII0_TXD0       | VDD       | ALIVE           | NC              | VDD       | VDDH     |          |          |          | DDC_SCL | VDD3    | 12S_FRCK        | VDD             | NC              | NC        | с |
| D | MII0_TXD3       | VDDMII    | MII0_TXC        | VDD3            | NC        | VDDH     | VSSH     | VDDH     | VSSH     | STATUS1 | I2S_BCK | STATUS2         |                 |                 | NC        | D |
| E | MIIO_RX_ CTL    |           | MII0_TXD1       | MIIO_TX_ CTL    |           |          |          |          |          |         |         | VDD             | VDD             | NC              |           | E |
| F | MII0_RXD1       | VDD       | MII0_RXC        | MII0_TXD2       |           |          |          |          |          |         |         |                 | NC              | NC              | NC        | F |
| G | MII0_RXD3       | MII0_RXD2 | VDDMII          | MII0_RXD0       |           |          |          |          |          |         |         | VDD             | NC              | NC              | NC        | G |
| н | VDDMI           | MII1_RXD2 | MII1_RXD3       |                 |           |          |          |          |          |         |         | VDD             | NC              | NC              |           | н |
| J | MI1_RXD1        | MI1_RXD0  | VDD             | MI1_RX_ CTL     |           |          |          |          |          |         |         | VDD             | NC              | NC              |           | J |
| к | MII1_RXC        |           | MII1_TXD3       | MI1_TXD1        |           |          |          |          |          |         |         | VDD             | NC              | NC              | NC        | к |
| L | MI1_TXD2        | VDDMII    | MII1_TX_ CTL    | TEST            |           |          |          |          |          |         |         | SPI_S_<br>STALL | NC              | NC              | NC        | L |
| М | MI1_TXD0        | MI1_TXC   | STATUS0         | VDD             | SPI_M_SDO | TXDN1_P  | TXDN1_N  | VDDA_VCO | TXDN0_N  | TXDN0_P |         | VDD             | SPI_S_SDI       | VDD3            | VDD       | м |
| N | RESET_N         | VDD3      | SPI_M_<br>CS1_N | SPI_M_<br>CS0_N | VPP       |          | VDDA3    | ATST     | VDDA3    |         | XI      |                 | SPI_S_<br>CS2_N | SPI_S_SCK       | SPI_S_SDO | N |
| Ρ | SPI_M_<br>Stall | SPI_M_SCK | VDD3            | VDDH            | VDDA      |          |          | VDDA     |          |         | VDDA    | хо              | SPI_S_<br>CS0_N | SPI_S_<br>CS1_N | AP11_FLAG | Ρ |
| R | NC              | AP00_FLAG | AP00_FLAG       | VDD             | VDDA3     |          |          |          |          |         | VDDA3   | VDD             | VSS             | VDD3            | NC        | R |
|   | 1               | 2         | 3               | 4               | 5         | 6        | 7        | 8        | 9        | 10      | 11      | 12              | 13              | 14              | 15        |   |








# 4.4 Package Dimensions

| TOTAL THICKNESS A<br>STAND OFF A<br>MOLD THICKNESS A<br>L/F THICKNESS A<br>L/F THICKNESS A<br>L/E THICKNESS A<br>L/E MDTH b | A   |       |           |       |
|-----------------------------------------------------------------------------------------------------------------------------|-----|-------|-----------|-------|
| CHESS CHESS                                                                                                                 |     |       |           | 0.85  |
|                                                                                                                             | A1  | 0.02  | 0.05      | 0.08  |
| ESS .                                                                                                                       | A2  |       | 0.675 REF |       |
|                                                                                                                             | A3  |       | 0.13 REF  |       |
|                                                                                                                             | q   | 0.2   | 0.25      | 0.3   |
| -                                                                                                                           | b1  | 0.575 | 0.625     | 0.675 |
| a                                                                                                                           | b2  |       | 0.1 REF   |       |
| ×                                                                                                                           | ۵   |       | 11 BSC    |       |
|                                                                                                                             | ш   |       | 11 BSC    |       |
| LEAD PITCH                                                                                                                  | e   |       | 0.7 BSC   |       |
| SIJT X                                                                                                                      | -   | 4.2   | 4.3       | 4.4   |
|                                                                                                                             | ¥   | 4.2   | 4.3       | 4.4   |
|                                                                                                                             | _   | 0.575 | 0.625     | 0.675 |
|                                                                                                                             | L1  |       | 0.1 REF   |       |
| PACKAGE EDGE TOLERANCE ad                                                                                                   | aaa |       | 0.1       |       |
| MOLD FLATNESS bt                                                                                                            | bbb |       | 0.2       |       |
| COPLANARITY CO                                                                                                              | ccc |       | 0.1       |       |
| LEAD OFFSET do                                                                                                              | ppp |       | 0.08      |       |
| EXPOSED PAD TOLERANCE                                                                                                       | eee |       | 0.1       |       |
|                                                                                                                             |     |       |           |       |
|                                                                                                                             |     |       |           |       |
|                                                                                                                             |     |       |           |       |
|                                                                                                                             |     |       |           |       |
|                                                                                                                             |     |       |           |       |

NOTES 1.0 COPLANARITY APPLIES TO LEADS, CORNER LEADS AND DIE ATTACH PAD.









# **5.0 Temperature range**

The maximum ambient temperature range for the device depends on the power consumption in the application. The power consumption mainly depends on the pixel clock frequency and the line driver settings for the cable.

| Package  | Power consumption | Temperature range |  |  |
|----------|-------------------|-------------------|--|--|
| aQFN151  | <= 0.7 W          | -40°C to +105°C   |  |  |
| agrinist | > 0.7 W           | -40°C to +95°C    |  |  |

 Table 5-1: Temperature range

# 6.0 Ordering Information

| Device<br>Ordering Code | Package  | Quality  | HDCP | Minimum Order<br>Quantity |
|-------------------------|----------|----------|------|---------------------------|
| INAP560TAQ-T            | aQFN-151 | AEC-Q100 | no   | 176 / tray                |
| INAP590TAQ-T            | aQFN-151 | AEC-Q100 | yes  | 176 / tray                |
| INAP560TAQ-R2           | aQFN-151 | AEC-Q100 | no   | 2000 / reel               |
| INAP590TAQ-R2           | aQFN-151 | AEC-Q100 | yes  | 2000 / reel               |

Table 6-1: Ordering information





# 7.0 Revision History

| Revision | Date       | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.1      | March 2015 | Initial Release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.2      | April 2015 | <ul> <li>Added MII functionality, Updated Table 4-2, "Pin list aQFN 151"</li> <li>Updated Table 3-7, "General IO Characteristics"</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.3      | June 2015  | <ul> <li>Updated Figure 4-1 "Pinout Diagram", removed pin F12</li> <li>Updated Table 4-1, "Boot-strap options", added BST_VDD, updated BST_MII</li> <li>Updated Table 4-2, "Pin list aQFN 151", HDMI_MON needs to be left open</li> <li>Updated Figure 4-2 "Package Dimensions aQFN 151"</li> <li>Added Table 6-1, "Ordering information"</li> </ul>                                                                                                                                                                                        |
| 0.4      | Oct. 2015  | <ul> <li>Added pin SPI_M_STALL to Table 4-2, "Pin list aQFN 151"</li> <li>Updated Table 4-2, "Pin list aQFN 151", Pin REXT</li> <li>Added Table 4-3, "Reset state of all digital IO pins"</li> <li>Updated Table 3-3, "Supply currents"</li> <li>Added INAP590T product version</li> </ul>                                                                                                                                                                                                                                                  |
| 0.5      | Feb. 2016  | <ul> <li>Updated temperature range from -40°C to +105°C</li> <li>Updated Table 4-2, "Pin list aQFN 151"</li> <li>Updated Figure 4-1 "Pinout Diagram"</li> <li>Updated Figure 4-2 "Package Dimensions aQFN 151"</li> </ul>                                                                                                                                                                                                                                                                                                                   |
| 1.0      | April 2017 | <ul> <li>Updated Table 3-1, "Absolute maximum ratings"</li> <li>Updated Table 3-3, "Supply currents"</li> <li>Updated Table 3-4, "Downstream interface characteristics (TXDN0_P, TXDN0_N)"</li> <li>Added Section 3.4.3.2 "SPI Slave Interface timing"</li> <li>Added Section 3.4.3.3 "SPI Master Interface timing"</li> <li>Added Section 3.4.3.4 "MII Interface Timings"</li> <li>Added Section 3.4.3.5 "APFlag Interface"</li> <li>Added Section 3.4.3.6 "I2S Audio Interface"</li> <li>Added Section 5.0 "Temperature range"</li> </ul> |
| 1.1      | May 2017   | <ul> <li>Updated Table 3-1, "Absolute maximum ratings"</li> <li>Updated Figure 3-3 "SPI Slave Timing Diagram"</li> <li>Updated Table 3-8, "SPI Slave Interface characteristics"</li> </ul>                                                                                                                                                                                                                                                                                                                                                  |

Table 7-1: Revision History





### Inova Semiconductors GmbH

Grafinger Str. 26 D-81671 Munich / Germany Phone: +49 (0)89 / 45 74 75 - 60 Fax: +49 (0)89 / 45 74 75 - 88 Email: info@inova-semiconductors.de URL: http://www.inova-semiconductors.com



All other trademarks or registered trademarks are the property of their respective holders.

Inova Semiconductors GmbH does not assume any liability arising out of the applications or use of the product described herein; nor does it convey any license under its patents, copyright rights or any rights of others.

Inova Semiconductors products are not designed, intended or authorized for use as components in systems to support or sustain life, or for any other application in which the failure of the product could create a situation where personal injury or death may occur. The information contained in this document is believed to be current and accurate as of the publication date. Inova Semiconductors GmbH reserves the right to make changes at any time in order to improve reliability, function or performance to supply the best product possible.

Inova Semiconductors GmbH assumes no obligation to correct any errors contained herein or to advise any user of this text of any correction if such be made.

© Inova Semiconductors 2017



**Errata Sheet** 



# Errata for UM\_INAP560T, Rev 1.0

Order ID: ER\_UM\_INAP560R\_1\_0 May 2019 Revision 1.1

# Scope

This errata describes information to be added, changed or replaced in the INAP560T Rev1.1 user manual.

# **1.0 Document Updates**

# The following information need to be updated in the document

# 5.3.3 Startup procedure

The following registers access must be performed to activate and optimize the HDMI interface.

| Access | Page | Address | Value | Description                                                                                                    |
|--------|------|---------|-------|----------------------------------------------------------------------------------------------------------------|
| W      | 0x07 | 0x85    |       | Set frequency range according to pixel clock<br>0x00: 25 - 50 MHz<br>0x01: 50 - 100 MHz<br>0x02: 100 - 200 MHz |
| W      | 0x07 | 0x001   | 0x00  | Disable parameter check (mandatory)                                                                            |
| W      | 0x07 | 0x082   | 0x68  |                                                                                                                |
| W      | 0x07 | 0x083   | 0x06  | PCU command to set HDMI interrupt mask to HDMI and DVI                                                         |
| W      | 0x07 | 0x084   | 0x05  |                                                                                                                |
| RC     | 0x07 | 0x100   |       | Read clear until Bit0 = 1, hdmi_pcu_agency_done                                                                |
| w      | 0x07 | 0x082   | 0x30  |                                                                                                                |
| w      | 0x07 | 0x083   | 0xBE  | PCU command to configure HDMI Charge pump                                                                      |
| w      | 0x07 | 0x084   | 0x05  |                                                                                                                |
| RC     | 0x07 | 0x100   |       | Read clear until Bit0 = 1, hdmi_pcu_agency_done                                                                |
| w      | 0x07 | 0x082   | 0x0F  |                                                                                                                |
| w      | 0x07 | 0x083   | 0xBF  | PCU command to configure HDMI VCO Gain                                                                         |
| w      | 0x07 | 0x084   | 0x05  |                                                                                                                |
| RC     | 0x07 | 0x100   |       | Read clear until Bit0 = 1, hdmi_pcu_agency_done                                                                |
| w      | 0x07 | 0x082   | 0x02  |                                                                                                                |
| w      | 0x07 | 0x083   | 0xC6  | PCU command to configure HDMI Band gap refer-<br>ence                                                          |
| w      | 0x07 | 0x084   | 0x05  |                                                                                                                |
| RC     | 0x07 | 0x100   |       | Read clear until Bit0 = 1, hdmi_pcu_agency_done                                                                |
| W      | 0x07 | 0x080   | 0x01  | Set 5V Hot plug detect                                                                                         |

#### Table 1-1: HDMI startup procedure





# 4.3.2 Control registers

For APIX2 upstream operation tx1\_up\_enable needs to be set in the PHY power down control registers. Please refer to Table 4-6 for register details.

# To achieve the optimal upstream sensitivity, the upstream offset compensation must be enabled by the following register.

| Addr. | Name                       | Bit | Default | Recom<br>mended | Self<br>clearing | Description                                          |
|-------|----------------------------|-----|---------|-----------------|------------------|------------------------------------------------------|
| 0x139 | tx1_upRX_offset_ena<br>ble | 0   | 0       | 1               | no               | Enable upstream<br>receiver offset compen-<br>sation |

#### Table 4-11: Upstream offset compensation

# 14.7.2 PHY control registers

Table 14-21: Page 0x08, PHY control registers needs to be updated to the following description.

| Addr. | Name                          | Bit | Default | Recom<br>mended | Self<br>clearing | Description                                                                                                                                                                 |
|-------|-------------------------------|-----|---------|-----------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | tx1_upRX_calib_en             | 7   | 0       | 0               | no               | Enable upstream receiver calibration                                                                                                                                        |
|       | tx1_upRX_comp_clk             | 6   | 1       | 1               | yes              | Trigger replica gain detec-<br>tor comparator (compare<br>at fallin gedge, output<br>available at rising edge)                                                              |
|       | tx1_upRX_comp_enab<br>le      | 5   | 0       | 0               | no               | Enable upstream receiver replica gain detector                                                                                                                              |
| 0x139 | tx1_upRX_comp_sele<br>ct[1:0] | 4:3 | 11      | 11              | no               | Select comparator input<br>00: Shorted input (self cali-<br>bration)<br>01: Replica gain detector<br>10: Upstream Receiver<br>with shorted input)<br>11: Upstream operation |
|       | unused                        | 2:1 | 00      | 00              | no               |                                                                                                                                                                             |
|       | tx1_upRX_offset_ena<br>ble    | 0   | 0       | 1               | no               | Enable upstream<br>receiver offset compen-<br>sation                                                                                                                        |



Errata Sheet



# 2.0 Release History

| Version | Description                                                                                              |
|---------|----------------------------------------------------------------------------------------------------------|
| 1.0     | Initial Release                                                                                          |
| 1.1     | Added Updates for 4.3.2 Control registers<br>Added Updates for Table 14-21 Page 8, PHY control registers |

# Table 2-1: Release History



Errata Sheet



# Inova Semiconductors GmbH

Grafinger Str. 26 D-81671 Munich / Germany Phone: +49 (0)89 / 45 74 75 - 60 Fax: +49 (0)89 / 45 74 75 - 88 **Email**: info@inova-semiconductors.de **URL**: http://www.inova-semiconductors.com



All other trademarks or registered trademarks are the property of their respective holders.

Inova Semiconductors GmbH does not assume any liability arising out of the applications or use of the product described herein; nor does it convey any license under its patents, copyright rights or any rights of others.

Inova Semiconductors products are not designed, intended or authorized for use as components in systems to support or sustain life, or for any other application in which the failure of the product could create a situation where personal injury or death may occur. The information contained in this document is believed to be current and accurate as of the publication date. Inova Semiconductors GmbH reserves the right to make changes at any time in order to improve reliability, function or performance to supply the best product possible. Inova Semiconductors GmbH assumes no obligation to correct any errors contained herein or to advise any user of this text of any correction if such be made.

© Inova Semiconductors 2019





# Errata for UM\_INAP590T, Rev 1.1

Order ID: ER\_UM\_INAP590R\_1\_1 May 2019 Revision 1.1

# Scope

This errata describes information to be added, changed or replaced in the INAP590T Rev1.1 user manual.

# **1.0 Document Updates**

# The following information need to be updated in the document

# 5.3.3 Startup procedure

The following registers access must be performed to activate and optimize the HDMI interface.

| Access | Page | Address | Value | Description                                                                                                    |  |  |
|--------|------|---------|-------|----------------------------------------------------------------------------------------------------------------|--|--|
| W      | 0x07 | 0x85    |       | Set frequency range according to pixel clock<br>0x00: 25 - 50 MHz<br>0x01: 50 - 100 MHz<br>0x02: 100 - 200 MHz |  |  |
| W      | 0x07 | 0x001   | 0x00  | Disable parameter check (mandatory)                                                                            |  |  |
| W      | 0x07 | 0x082   | 0x68  |                                                                                                                |  |  |
| W      | 0x07 | 0x083   | 0x06  | PCU command to set HDMI interrupt mask to HDMI and DVI                                                         |  |  |
| W      | 0x07 | 0x084   | 0x05  |                                                                                                                |  |  |
| RC     | 0x07 | 0x100   |       | Read clear until Bit0 = 1, hdmi_pcu_agency_done                                                                |  |  |
| w      | 0x07 | 0x082   | 0x30  |                                                                                                                |  |  |
| w      | 0x07 | 0x083   | 0xBE  | PCU command to configure HDMI Charge pump                                                                      |  |  |
| w      | 0x07 | 0x084   | 0x05  |                                                                                                                |  |  |
| RC     | 0x07 | 0x100   |       | Read clear until Bit0 = 1, hdmi_pcu_agency_done                                                                |  |  |
| w      | 0x07 | 0x082   | 0x0F  |                                                                                                                |  |  |
| w      | 0x07 | 0x083   | 0xBF  | PCU command to configure HDMI VCO Gain                                                                         |  |  |
| w      | 0x07 | 0x084   | 0x05  |                                                                                                                |  |  |
| RC     | 0x07 | 0x100   |       | Read clear until Bit0 = 1, hdmi_pcu_agency_done                                                                |  |  |
| w      | 0x07 | 0x082   | 0x02  |                                                                                                                |  |  |
| w      | 0x07 | 0x083   | 0xC6  | PCU command to configure HDMI Band gap refer-<br>ence                                                          |  |  |
| w      | 0x07 | 0x084   | 0x05  |                                                                                                                |  |  |
| RC     | 0x07 | 0x100   |       | Read clear until Bit0 = 1, hdmi_pcu_agency_done                                                                |  |  |
| W      | 0x07 | 0x080   | 0x01  | Set 5V Hot plug detect                                                                                         |  |  |

#### Table 1-1: HDMI startup procedure





# 4.3.2 Control registers

For APIX2 upstream operation tx1\_up\_enable needs to be set in the PHY power down control registers. Please refer to Table 4-6 for register details.

# To achieve the optimal upstream sensitivity, the upstream offset compensation must be enabled by the following register.

| Addr. | Name                       | Bit | Default | Recom<br>mended | Self<br>clearing | Description                                          |
|-------|----------------------------|-----|---------|-----------------|------------------|------------------------------------------------------|
| 0x139 | tx1_upRX_offset_ena<br>ble | 0   | 0       | 1               | no               | Enable upstream<br>receiver offset compen-<br>sation |

#### Table 4-11: Upstream offset compensation

# **15.8.2 PHY control registers**

Table 15-32: Page 0x08, PHY control registers needs to be updated to the following description.

| Addr. | Name                          | Bit | Default | Recom<br>mended | Self<br>clearing | Description                                                                                                                                                                 |
|-------|-------------------------------|-----|---------|-----------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | tx1_upRX_calib_en             | 7   | 0       | 0               | no               | Enable upstream receiver calibration                                                                                                                                        |
|       | tx1_upRX_comp_clk             | 6   | 1       | 1               | yes              | Trigger replica gain detec-<br>tor comparator (compare<br>at fallin gedge, output<br>available at rising edge)                                                              |
|       | tx1_upRX_comp_enab<br>le      | 5   | 0       | 0               | no               | Enable upstream receiver replica gain detector                                                                                                                              |
| 0x139 | tx1_upRX_comp_sele<br>ct[1:0] | 4:3 | 11      | 11              | no               | Select comparator input<br>00: Shorted input (self cali-<br>bration)<br>01: Replica gain detector<br>10: Upstream Receiver<br>with shorted input)<br>11: Upstream operation |
|       | unused                        | 2:1 | 00      | 00              | no               |                                                                                                                                                                             |
|       | tx1_upRX_offset_ena<br>ble    | 0   | 0       | 1               | no               | Enable upstream<br>receiver offset compen-<br>sation                                                                                                                        |

Table 15-32: Page 8, PHY control registers



Errata Sheet



# 2.0 Release History

| Version | Description                                                                                              |
|---------|----------------------------------------------------------------------------------------------------------|
| 1.0     | Initial Release                                                                                          |
| 1.1     | Added Updates for 4.3.2 Control registers<br>Added Updates for Table 15-32 Page 8, PHY control registers |

# Table 2-1: Release History



Errata Sheet



# Inova Semiconductors GmbH

Grafinger Str. 26 D-81671 Munich / Germany Phone: +49 (0)89 / 45 74 75 - 60 Fax: +49 (0)89 / 45 74 75 - 88 **Email**: info@inova-semiconductors.de **URL**: http://www.inova-semiconductors.com



All other trademarks or registered trademarks are the property of their respective holders.

Inova Semiconductors GmbH does not assume any liability arising out of the applications or use of the product described herein; nor does it convey any license under its patents, copyright rights or any rights of others.

Inova Semiconductors products are not designed, intended or authorized for use as components in systems to support or sustain life, or for any other application in which the failure of the product could create a situation where personal injury or death may occur. The information contained in this document is believed to be current and accurate as of the publication date. Inova Semiconductors GmbH reserves the right to make changes at any time in order to improve reliability, function or performance to supply the best product possible. Inova Semiconductors GmbH assumes no obligation to correct any errors contained herein or to advise any user of this text of any correction if such be made.

© Inova Semiconductors 2019